3.5.55 \(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^5} \, dx\)

Optimal. Leaf size=347 \[ \frac {5 c^4 d^4 \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{64 g^{3/2} (c d f-a e g)^{7/2}}+\frac {5 c^3 d^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{64 g \sqrt {d+e x} (f+g x) (c d f-a e g)^3}+\frac {5 c^2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{96 g \sqrt {d+e x} (f+g x)^2 (c d f-a e g)^2}+\frac {c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{24 g \sqrt {d+e x} (f+g x)^3 (c d f-a e g)}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 g \sqrt {d+e x} (f+g x)^4} \]

________________________________________________________________________________________

Rubi [A]  time = 0.45, antiderivative size = 347, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {862, 872, 874, 205} \begin {gather*} \frac {5 c^4 d^4 \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{64 g^{3/2} (c d f-a e g)^{7/2}}+\frac {5 c^3 d^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{64 g \sqrt {d+e x} (f+g x) (c d f-a e g)^3}+\frac {5 c^2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{96 g \sqrt {d+e x} (f+g x)^2 (c d f-a e g)^2}+\frac {c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{24 g \sqrt {d+e x} (f+g x)^3 (c d f-a e g)}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 g \sqrt {d+e x} (f+g x)^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(Sqrt[d + e*x]*(f + g*x)^5),x]

[Out]

-Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(4*g*Sqrt[d + e*x]*(f + g*x)^4) + (c*d*Sqrt[a*d*e + (c*d^2 + a*e^
2)*x + c*d*e*x^2])/(24*g*(c*d*f - a*e*g)*Sqrt[d + e*x]*(f + g*x)^3) + (5*c^2*d^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*
x + c*d*e*x^2])/(96*g*(c*d*f - a*e*g)^2*Sqrt[d + e*x]*(f + g*x)^2) + (5*c^3*d^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x
 + c*d*e*x^2])/(64*g*(c*d*f - a*e*g)^3*Sqrt[d + e*x]*(f + g*x)) + (5*c^4*d^4*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d
^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(64*g^(3/2)*(c*d*f - a*e*g)^(7/2))

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 862

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[((d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^p)/(g*(n + 1)), x] + Dist[(c*m)/(e*g*(n + 1)), Int[(d +
e*x)^(m + 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f
 - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && GtQ[p,
 0] && LtQ[n, -1] &&  !(IntegerQ[n + p] && LeQ[n + p + 2, 0])

Rule 872

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
-Simp[(e^2*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p + 1))/((n + 1)*(c*e*f + c*d*g - b*e*g)), x
] - Dist[(c*e*(m - n - 2))/((n + 1)*(c*e*f + c*d*g - b*e*g)), Int[(d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x + c*x
^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^
2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && LtQ[n, -1] && IntegerQ[2*p]

Rule 874

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^5} \, dx &=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 g \sqrt {d+e x} (f+g x)^4}+\frac {(c d) \int \frac {\sqrt {d+e x}}{(f+g x)^4 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 g}\\ &=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 g \sqrt {d+e x} (f+g x)^4}+\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{24 g (c d f-a e g) \sqrt {d+e x} (f+g x)^3}+\frac {\left (5 c^2 d^2\right ) \int \frac {\sqrt {d+e x}}{(f+g x)^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{48 g (c d f-a e g)}\\ &=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 g \sqrt {d+e x} (f+g x)^4}+\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{24 g (c d f-a e g) \sqrt {d+e x} (f+g x)^3}+\frac {5 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{96 g (c d f-a e g)^2 \sqrt {d+e x} (f+g x)^2}+\frac {\left (5 c^3 d^3\right ) \int \frac {\sqrt {d+e x}}{(f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{64 g (c d f-a e g)^2}\\ &=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 g \sqrt {d+e x} (f+g x)^4}+\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{24 g (c d f-a e g) \sqrt {d+e x} (f+g x)^3}+\frac {5 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{96 g (c d f-a e g)^2 \sqrt {d+e x} (f+g x)^2}+\frac {5 c^3 d^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 g (c d f-a e g)^3 \sqrt {d+e x} (f+g x)}+\frac {\left (5 c^4 d^4\right ) \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{128 g (c d f-a e g)^3}\\ &=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 g \sqrt {d+e x} (f+g x)^4}+\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{24 g (c d f-a e g) \sqrt {d+e x} (f+g x)^3}+\frac {5 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{96 g (c d f-a e g)^2 \sqrt {d+e x} (f+g x)^2}+\frac {5 c^3 d^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 g (c d f-a e g)^3 \sqrt {d+e x} (f+g x)}+\frac {\left (5 c^4 d^4 e^2\right ) \operatorname {Subst}\left (\int \frac {1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{64 g (c d f-a e g)^3}\\ &=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 g \sqrt {d+e x} (f+g x)^4}+\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{24 g (c d f-a e g) \sqrt {d+e x} (f+g x)^3}+\frac {5 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{96 g (c d f-a e g)^2 \sqrt {d+e x} (f+g x)^2}+\frac {5 c^3 d^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 g (c d f-a e g)^3 \sqrt {d+e x} (f+g x)}+\frac {5 c^4 d^4 \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{64 g^{3/2} (c d f-a e g)^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.04, size = 79, normalized size = 0.23 \begin {gather*} \frac {2 c^4 d^4 ((d+e x) (a e+c d x))^{3/2} \, _2F_1\left (\frac {3}{2},5;\frac {5}{2};\frac {g (a e+c d x)}{a e g-c d f}\right )}{3 (d+e x)^{3/2} (c d f-a e g)^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(Sqrt[d + e*x]*(f + g*x)^5),x]

[Out]

(2*c^4*d^4*((a*e + c*d*x)*(d + e*x))^(3/2)*Hypergeometric2F1[3/2, 5, 5/2, (g*(a*e + c*d*x))/(-(c*d*f) + a*e*g)
])/(3*(c*d*f - a*e*g)^5*(d + e*x)^(3/2))

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 180.02, size = 0, normalized size = 0.00 \begin {gather*} \text {\$Aborted} \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(Sqrt[d + e*x]*(f + g*x)^5),x]

[Out]

$Aborted

________________________________________________________________________________________

fricas [B]  time = 0.48, size = 2610, normalized size = 7.52

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(g*x+f)^5/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

[1/384*(15*(c^4*d^4*e*g^4*x^5 + c^4*d^5*f^4 + (4*c^4*d^4*e*f*g^3 + c^4*d^5*g^4)*x^4 + 2*(3*c^4*d^4*e*f^2*g^2 +
 2*c^4*d^5*f*g^3)*x^3 + 2*(2*c^4*d^4*e*f^3*g + 3*c^4*d^5*f^2*g^2)*x^2 + (c^4*d^4*e*f^4 + 4*c^4*d^5*f^3*g)*x)*s
qrt(-c*d*f*g + a*e*g^2)*log(-(c*d*e*g*x^2 - c*d^2*f + 2*a*d*e*g - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x + 2*sqrt(c
*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*f*g + a*e*g^2)*sqrt(e*x + d))/(e*g*x^2 + d*f + (e*f + d*g)*x))
 - 2*(15*c^4*d^4*f^4*g - 133*a*c^3*d^3*e*f^3*g^2 + 254*a^2*c^2*d^2*e^2*f^2*g^3 - 184*a^3*c*d*e^3*f*g^4 + 48*a^
4*e^4*g^5 - 15*(c^4*d^4*f*g^4 - a*c^3*d^3*e*g^5)*x^3 - 5*(11*c^4*d^4*f^2*g^3 - 13*a*c^3*d^3*e*f*g^4 + 2*a^2*c^
2*d^2*e^2*g^5)*x^2 - (73*c^4*d^4*f^3*g^2 - 109*a*c^3*d^3*e*f^2*g^3 + 44*a^2*c^2*d^2*e^2*f*g^4 - 8*a^3*c*d*e^3*
g^5)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c^4*d^5*f^8*g^2 - 4*a*c^3*d^4*e*f^7*g^3 +
6*a^2*c^2*d^3*e^2*f^6*g^4 - 4*a^3*c*d^2*e^3*f^5*g^5 + a^4*d*e^4*f^4*g^6 + (c^4*d^4*e*f^4*g^6 - 4*a*c^3*d^3*e^2
*f^3*g^7 + 6*a^2*c^2*d^2*e^3*f^2*g^8 - 4*a^3*c*d*e^4*f*g^9 + a^4*e^5*g^10)*x^5 + (4*c^4*d^4*e*f^5*g^5 + a^4*d*
e^4*g^10 + (c^4*d^5 - 16*a*c^3*d^3*e^2)*f^4*g^6 - 4*(a*c^3*d^4*e - 6*a^2*c^2*d^2*e^3)*f^3*g^7 + 2*(3*a^2*c^2*d
^3*e^2 - 8*a^3*c*d*e^4)*f^2*g^8 - 4*(a^3*c*d^2*e^3 - a^4*e^5)*f*g^9)*x^4 + 2*(3*c^4*d^4*e*f^6*g^4 + 2*a^4*d*e^
4*f*g^9 + 2*(c^4*d^5 - 6*a*c^3*d^3*e^2)*f^5*g^5 - 2*(4*a*c^3*d^4*e - 9*a^2*c^2*d^2*e^3)*f^4*g^6 + 12*(a^2*c^2*
d^3*e^2 - a^3*c*d*e^4)*f^3*g^7 - (8*a^3*c*d^2*e^3 - 3*a^4*e^5)*f^2*g^8)*x^3 + 2*(2*c^4*d^4*e*f^7*g^3 + 3*a^4*d
*e^4*f^2*g^8 + (3*c^4*d^5 - 8*a*c^3*d^3*e^2)*f^6*g^4 - 12*(a*c^3*d^4*e - a^2*c^2*d^2*e^3)*f^5*g^5 + 2*(9*a^2*c
^2*d^3*e^2 - 4*a^3*c*d*e^4)*f^4*g^6 - 2*(6*a^3*c*d^2*e^3 - a^4*e^5)*f^3*g^7)*x^2 + (c^4*d^4*e*f^8*g^2 + 4*a^4*
d*e^4*f^3*g^7 + 4*(c^4*d^5 - a*c^3*d^3*e^2)*f^7*g^3 - 2*(8*a*c^3*d^4*e - 3*a^2*c^2*d^2*e^3)*f^6*g^4 + 4*(6*a^2
*c^2*d^3*e^2 - a^3*c*d*e^4)*f^5*g^5 - (16*a^3*c*d^2*e^3 - a^4*e^5)*f^4*g^6)*x), -1/192*(15*(c^4*d^4*e*g^4*x^5
+ c^4*d^5*f^4 + (4*c^4*d^4*e*f*g^3 + c^4*d^5*g^4)*x^4 + 2*(3*c^4*d^4*e*f^2*g^2 + 2*c^4*d^5*f*g^3)*x^3 + 2*(2*c
^4*d^4*e*f^3*g + 3*c^4*d^5*f^2*g^2)*x^2 + (c^4*d^4*e*f^4 + 4*c^4*d^5*f^3*g)*x)*sqrt(c*d*f*g - a*e*g^2)*arctan(
sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d*f*g - a*e*g^2)*sqrt(e*x + d)/(c*d*e*g*x^2 + a*d*e*g + (c*
d^2 + a*e^2)*g*x)) + (15*c^4*d^4*f^4*g - 133*a*c^3*d^3*e*f^3*g^2 + 254*a^2*c^2*d^2*e^2*f^2*g^3 - 184*a^3*c*d*e
^3*f*g^4 + 48*a^4*e^4*g^5 - 15*(c^4*d^4*f*g^4 - a*c^3*d^3*e*g^5)*x^3 - 5*(11*c^4*d^4*f^2*g^3 - 13*a*c^3*d^3*e*
f*g^4 + 2*a^2*c^2*d^2*e^2*g^5)*x^2 - (73*c^4*d^4*f^3*g^2 - 109*a*c^3*d^3*e*f^2*g^3 + 44*a^2*c^2*d^2*e^2*f*g^4
- 8*a^3*c*d*e^3*g^5)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c^4*d^5*f^8*g^2 - 4*a*c^3*
d^4*e*f^7*g^3 + 6*a^2*c^2*d^3*e^2*f^6*g^4 - 4*a^3*c*d^2*e^3*f^5*g^5 + a^4*d*e^4*f^4*g^6 + (c^4*d^4*e*f^4*g^6 -
 4*a*c^3*d^3*e^2*f^3*g^7 + 6*a^2*c^2*d^2*e^3*f^2*g^8 - 4*a^3*c*d*e^4*f*g^9 + a^4*e^5*g^10)*x^5 + (4*c^4*d^4*e*
f^5*g^5 + a^4*d*e^4*g^10 + (c^4*d^5 - 16*a*c^3*d^3*e^2)*f^4*g^6 - 4*(a*c^3*d^4*e - 6*a^2*c^2*d^2*e^3)*f^3*g^7
+ 2*(3*a^2*c^2*d^3*e^2 - 8*a^3*c*d*e^4)*f^2*g^8 - 4*(a^3*c*d^2*e^3 - a^4*e^5)*f*g^9)*x^4 + 2*(3*c^4*d^4*e*f^6*
g^4 + 2*a^4*d*e^4*f*g^9 + 2*(c^4*d^5 - 6*a*c^3*d^3*e^2)*f^5*g^5 - 2*(4*a*c^3*d^4*e - 9*a^2*c^2*d^2*e^3)*f^4*g^
6 + 12*(a^2*c^2*d^3*e^2 - a^3*c*d*e^4)*f^3*g^7 - (8*a^3*c*d^2*e^3 - 3*a^4*e^5)*f^2*g^8)*x^3 + 2*(2*c^4*d^4*e*f
^7*g^3 + 3*a^4*d*e^4*f^2*g^8 + (3*c^4*d^5 - 8*a*c^3*d^3*e^2)*f^6*g^4 - 12*(a*c^3*d^4*e - a^2*c^2*d^2*e^3)*f^5*
g^5 + 2*(9*a^2*c^2*d^3*e^2 - 4*a^3*c*d*e^4)*f^4*g^6 - 2*(6*a^3*c*d^2*e^3 - a^4*e^5)*f^3*g^7)*x^2 + (c^4*d^4*e*
f^8*g^2 + 4*a^4*d*e^4*f^3*g^7 + 4*(c^4*d^5 - a*c^3*d^3*e^2)*f^7*g^3 - 2*(8*a*c^3*d^4*e - 3*a^2*c^2*d^2*e^3)*f^
6*g^4 + 4*(6*a^2*c^2*d^3*e^2 - a^3*c*d*e^4)*f^5*g^5 - (16*a^3*c*d^2*e^3 - a^4*e^5)*f^4*g^6)*x)]

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(g*x+f)^5/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.04, size = 696, normalized size = 2.01 \begin {gather*} \frac {\sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}\, \left (15 c^{4} d^{4} g^{4} x^{4} \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )+60 c^{4} d^{4} f \,g^{3} x^{3} \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )+90 c^{4} d^{4} f^{2} g^{2} x^{2} \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )+60 c^{4} d^{4} f^{3} g x \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )+15 c^{4} d^{4} f^{4} \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )-15 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, c^{3} d^{3} g^{3} x^{3}+10 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a \,c^{2} d^{2} e \,g^{3} x^{2}-55 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, c^{3} d^{3} f \,g^{2} x^{2}-8 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a^{2} c d \,e^{2} g^{3} x +36 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a \,c^{2} d^{2} e f \,g^{2} x -73 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, c^{3} d^{3} f^{2} g x -48 \sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, a^{3} e^{3} g^{3}+136 \sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, a^{2} c d \,e^{2} f \,g^{2}-118 \sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, a \,c^{2} d^{2} e \,f^{2} g +15 \sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, c^{3} d^{3} f^{3}\right )}{192 \sqrt {e x +d}\, \sqrt {\left (a e g -c d f \right ) g}\, \left (g x +f \right )^{4} \left (a e g -c d f \right ) \left (a^{2} e^{2} g^{2}-2 a c d e f g +f^{2} c^{2} d^{2}\right ) \sqrt {c d x +a e}\, g} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)/(g*x+f)^5/(e*x+d)^(1/2),x)

[Out]

1/192*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)*(15*arctanh((c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)*g)*x^4*c^4
*d^4*g^4+60*arctanh((c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)*g)*x^3*c^4*d^4*f*g^3+90*arctanh((c*d*x+a*e)^(1/2
)/((a*e*g-c*d*f)*g)^(1/2)*g)*x^2*c^4*d^4*f^2*g^2+60*arctanh((c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)*g)*x*c^4
*d^4*f^3*g-15*x^3*c^3*d^3*g^3*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)+15*arctanh((c*d*x+a*e)^(1/2)/((a*e*g-c
*d*f)*g)^(1/2)*g)*c^4*d^4*f^4+10*x^2*a*c^2*d^2*e*g^3*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)-55*x^2*c^3*d^3*
f*g^2*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)-8*x*a^2*c*d*e^2*g^3*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)+
36*x*a*c^2*d^2*e*f*g^2*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)-73*x*c^3*d^3*f^2*g*(c*d*x+a*e)^(1/2)*((a*e*g-
c*d*f)*g)^(1/2)-48*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*a^3*e^3*g^3+136*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*
e)^(1/2)*a^2*c*d*e^2*f*g^2-118*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*a*c^2*d^2*e*f^2*g+15*((a*e*g-c*d*f)*g
)^(1/2)*(c*d*x+a*e)^(1/2)*c^3*d^3*f^3)/(e*x+d)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)/(g*x+f)^4/g/(a*e*g-c*d*f)/(a^2*e^
2*g^2-2*a*c*d*e*f*g+c^2*d^2*f^2)/(c*d*x+a*e)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{\sqrt {e x + d} {\left (g x + f\right )}^{5}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(g*x+f)^5/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(sqrt(e*x + d)*(g*x + f)^5), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{{\left (f+g\,x\right )}^5\,\sqrt {d+e\,x}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/((f + g*x)^5*(d + e*x)^(1/2)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/((f + g*x)^5*(d + e*x)^(1/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(g*x+f)**5/(e*x+d)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________